Catatan Kecil

Kesuksesan itu butuh direncanakan agar menjadi jelas dan lebih ter arah.
kesuksesan itu didapat dengan sebuah kerja keras dan semangat, dengan disertai doa.
and BE YOUR SELF.

Senin, 19 Desember 2016

STATISTIKA SMK XII AKUNTANSI SEMESTER 1



STATISTIKA

Statistika adalah cabang dari matematika yang mempelajari cara mengumpulkan data, menyusun data, menyajikan data, mengolah dan menganalisis data, menarik kesimpulan, dan menafsirkan parameter.

1.    Pengumpulan Data
Menurut sifatnya, data dibagi menjadi 2 golongan, yaitu
sebagai berikut :
a.         Data kuantitatif adalah data yang berbentuk angka atau
     bilangan. Data kuantitatif terbagi atas dua bagian, yaitu
     data cacahan dan data ukuran.
·         Data cacahan (data diskrit) adalah data yang diperoleh dengan cara membilang. Misalnya, data tentang banyak anak dalam keluarga.
·         Data ukuran (data kontinu) adalah data yang diperolehdengan cara mengukur. Misalnya, data tentangukuran tinggi badan murid.
b.        Data kualitatif adalah data yang bukan berbentuk bilangan.Data kualitatif berupa ciri, sifat, atau gambaran dari kualitasobjek. Sebagai contoh, data mengenai kualitaspelayanan, yaitu baik, sedang, dan kurang.
Cara untuk mengumpulkan data, antara lain adalah melakukan wawancara, mengisi lembar pertanyaan (questionery), melakukan pengamatan (observasi), atau menggunakan data yang sudah ada, misalnya rataan hitung nilai rapor.

Berikut adalah data nomor sepatu 20 orang siswa :
36, 37, 38, 39, 37, 39, 37, 38, 39, 40, 42, 38, 42, 41, 39, 38, 39, 38, 38, 38 Data tersebut jika disusun dalam bentuk Tabel/Diagram menjadi sebagai berikut.

Tabel
NO SEPATU
(x)
FREKUENSI
(f)
36
1
37
3
38
7
39
5
40
1
41
1
42
2

1. Diagram Garis
Penyajian data statistik dengan menggunakan diagram berbentuk garis lurus disebut diagram garis lurus atau diagram garis. Diagram garis biasanya digunakan untuk menyajikan data statistik yang diperoleh berdasarkan pengamatan dari waktu ke waktu secara berurutan.


Contoh:
 

2. Diagram Batang
Diagram batang umumnya digunakan untuk menggambarkan perkembangan nilai suatu objek penelitian dalam kurun waktu tertentu. Diagram batang menunjukkan keterangan-keterangan dengan batang-batang tegak atau mendatar dan sama lebar dengan batang-batang terpisah
.
Contoh :
 

3. Diagram Lingkaran
Diagram lingkaran adalah penyajian data statistik dengan menggunakan gambar yang berbentuk lingkaran. Bagian-bagian dari daerah lingkaran menunjukkan bagian-bagian atau persen dari keseluruhan. Untuk membuat diagram lingkaran, terlebih dahulu ditentukan besarnya persentase tiap objek terhadap keseluruhan data dan besarnya sudut pusat sektor lingkaran.
Contoh :





1. Distribusi Frekuensi Tunggal
Data tunggal seringkali dinyatakan dalam bentuk daftar bilangan, namun kadangkala dinyatakan dalam bentuk tabel distribusi frekuensi. Tabel distribusi frekuensi tunggal merupakan cara untuk menyusun data yang relatif sedikit.

2. Distribusi Frekuensi Kelompok 
Data yang berukuran besar (n > 30) lebih tepat disajikan dalam tabel distribusi frekuensi kelompok, yaitu cara penyajian data yang datanya disusun dalam kelas-kelas tertentu.

Langkah-langkah penyusunan tabel distribusi frekuensi adalah sebagai berikut :
·         Langkah ke-1 menentukan Jangkauan (J) = Xmax - Xmin
·         Langkah ke-2 menentukan banyak interval (K) dengan rumus "Sturgess" yaitu: K= 1 + 3,3 log n dengan n adalah banyak data. Banyak kelas harus merupakan bilangan bulat positif hasil pembulatan ke bawah.
·         Langkah ke-3 menentukan panjang interval kelas (I) dengan menggunakan rumus:
                  J
          I = ––––
                 K
·         Langkah ke-4 menentukan batas-batas kelas. Data terkecil harus merupakan batas bawah interval kelas pertama atau data terbesar adalah batas atas interval kelas terakhir.
·         Langkah ke-5 memasukkan data ke dalam kelas-kelas yang sesuai dan menentukan nilai frekuensi setiap kelas dengan sistem turus.

Perhatikan contoh data hasil nilai pengerjaan tugas Matematika
dari 40 siswa kelas XI berikut ini.
66 75 74 72 79 78 75 75 79 71
75 76 74 73 71 72 74 74 71 70
74 77 73 73 70 74 72 72 80 70
73 67 72 72 75 74 74 68 69 80
dari data diatas, dapat dibuat tabel distribusi frekuensi sbb:
 
Istilah-istilah yang banyak digunakan dalam pembahasan distribusi frekuensi
bergolong atau distribusi frekuensi berkelompok antara lain sebagai berikut.
a. Interval Kelas
            Tiap-tiap kelompok disebut interval kelas atau sering disebut interval atau kelas
saja. Dalam contoh sebelumnya memuat enam interval ini.
65 – 67 → Interval kelas pertama
68 – 70 → Interval kelas kedua
71 – 73 → Interval kelas ketiga
74 – 76 → Interval kelas keempat
77 – 79 → Interval kelas kelima
80 – 82 → Interval kelas keenam
b. Batas Kelas
            Berdasarkan tabel distribusi frekuensi di atas, angka 65, 68, 71, 74, 77, dan 80
merupakan batas bawah dari tiap-tiap kelas, sedangkan angka 67, 70, 73, 76, 79,
dan 82 merupakan batas atas dari tiap-tiap kelas.
c. Tepi Kelas (Batas Nyata Kelas)
            Untuk mencari tepi kelas dapat dipakai rumus berikut ini.
Tepi bawah = batas bawah – 0,5
Tepi atas = batas atas + 0,5
Dari tabel di atas maka tepi bawah kelas pertama 64,5 dan tepi atasnya 67,5, tepi
bawah kelas kedua 67,5 dan tepi atasnya 70,5 dan seterusnya.
d. Lebar kelas
            Untuk mencari lebar kelas dapat dipakai rumus:
Lebar kelas = tepi atas – tepi bawah
Jadi, lebar kelas dari tabel diatas adalah 67,5 – 64,5 = 3.
e. Titik Tengah
            Untuk mencari titik tengah dapat dipakai rumus:
Titik tengah = 1/2 (batas atas + batas bawah)
Dari tabel di atas: titik tengah kelas pertama = 1/2(67 + 65) = 66
titik tengah kedua = 1/2(70 + 68) = 69
dan seterusnya.

3. Histogram 
Dari suatu data yang diperoleh dapat disusun dalam tabel distribusi frekuensi dan disajikan dalam bentuk diagram yang disebut histogram. Jika pada diagram batang, gambar batang-batangnya terpisah maka pada histogram gambar batang-batangnya berimpit.
Contoh :
Data banyaknya siswa kelas XII AK 1 yang tidak masuk sekolah dalam 8 hari berurutan
sebagai berikut.
 

4. Poligon
·      Poligon Frekuensi
Apabila pada titik-titik tengah dari histogram dihubungkan dengan garis dan batang-batangnya dihapus, maka akan diperoleh poligon frekuensi. Berdasarkan contoh di atas dapat dibuat poligon frekuensinya seperti gambar berikut ini.

Contoh :
Hasil pengukuran berat badan terhadap 100 siswa XII AK  digambarkan dalam distribusi
bergolong seperti di bawah ini. Sajikan data tersebut dalam histogram dan poligon frekuensi.
 
Penyelesaian
Histogram dan poligon frekuensi dari tabel di atas dapat ditunjukkan sebagai berikut.
 
·         Poligon Frekuensi Kumulatif
Dari distribusi frekuensi kumulatif dapat dibuat grafik garis yang disebut poligon frekuensi kumulatif. Jika poligon frekuensi kumulatif dihaluskan, diperoleh kurva yang disebut kurva ogive. Untuk lebih jelasnya, perhatikan contoh soal berikut ini.
Hasil tes ulangan Matematika terhadap 40 siswa kelas XI IPA digambarkan dalam tabel di samping.
a. Buatlah daftar frekuensi kumulatif kurang dari dan lebih dari.
b. Gambarlah ogive naik dan ogive turun.
 

 
 5. Distribusi Frekuensi Kumulatif 
Daftar distribusi kumulatif ada dua macam, yaitu sebagai berikut.
a. Daftar distribusi kumulatif kurang dari (menggunakan tepi atas).
b. Daftar distribusi kumulatif lebih dari (menggunakan tepi bawah).
Untuk lebih jelasnya, perhatikan contoh data berikut ini :

Dari tabel di atas dapat dibuat daftar frekuensi kumulatif kurang dari dan lebih dari seperti berikut.
 
 6. Ogive (Ogif)
Grafik yang menunjukkan frekuensi kumulatif kurang dari atau frekuensi kumulatif lebih dari disebut poligon kumulatif. Poligon kumulatif dibuat mulus, yang hasilnya disebut ogif. Ada dua macam ogif, yaitu sebagai berikut.
a. Ogif frekuensi kumulatif kurang dari disebut ogif positif.
b. Ogif frekuensi kumulatif lebih dari disebut ogif negatif.

Daftar frekuensi kumulatif kurang dari dan lebih dari dapat disajikan dalam bidang
Cartesius. Tepi atas (67,5; 70,5; …; 82,5) atau tepi bawah (64,5; 67,5; …; 79,5)
diletakkan pada sumbu X sedangkan frekuensi kumulatif kurang dari atau frekuensi
kumulatif lebih dari diletakkan pada sumbu Y. Apabila titik-titik yang diperlukan
dihubungkan, maka terbentuk kurva yang disebut ogive. Ada dua macam ogive,
yaitu ogive naik dan ogive turun. Ogive naik apabila grafik disusun berdasarkan
distribusi frekuensi kumulatif kurang dari. Sedangkan ogive turun apabila berdasarkan
distribusi frekuensi kumulatif lebih dari.


Ogive naik dan ogive turun data di atas adalah sebagai berikut.
 


Tidak ada komentar:

Posting Komentar